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ABsTRACT. The inverse scattering problem of determining the complex absorption co-
efficient of an unbounded, penetrable and inhomogeneous medium from & knowledge of
the far-field patterns of the scattered fields corresponding to many incident time-harmonic
plane acoustic waves is solved by unsing the orthogonal projection method of Colton~Monk,

1. Introduction. This paper considers the inverse scattering problem of determining
the absorption of sound in an inhomogeneous, penetrable and unbounded medium from
a knowledge of the far-field patterns of the scattered fields corresponding to many inci-
dent time-harmonic plane waves. The inverse scattering problem for acoustic waves in
an inhomogeneous, penetrable medium is difficult to solve since it is both nonlinear and
improperly posed. Therefore, to simplify the problem, most existing inverse algorithms
reconstruct the sound velocity assuming that the absorption coefficient is negligible (cf.
3], [4] and [2]). We will not make this assumption, but instead of attempting to recon-
struct the sound velocity, we shall reconstruct the absorption coefficient by assuming
that the inhomogeneity of the medium is only caused by its absorption coefficient.

Our interest in reconstructing the absorption coefficient is motivated by its medical
applications. In particular, for biological tissue, a knowledge of the absorption coeffi-
cient may provide important diagnostic information since absorption for some biological
media is very sensitive to structural changes. For instance, the absorption of a normal
tissue may differ considerably from the absorption of a pathological tissue, while other
acoustical parameters of the medium, such as density and speed of sound, may differ
only slightly. Generally, density and sound velocity are only weakly dependent on struc-
tural changes {cf. (5], [6]). Also a knowledge of the absorption coefficient may provide
significant information for diffraction tomography since the absorption coefficient for
different types of biological media varies notably, while the speed of sound varies much
less [8]. . '

“There are two main methods for solving the inverse medium problem, (cf. [2], [3]).
The first approack, Linear Methods, is to simplify the problem by linearization, while
the second approach, Nonlinear Methods, considers the full nonlinear problem. Our ap-
proach is patterned after the Nonlinear Method discovered by Colton and Monk (cf. [2],
{3], [4]). The main idea of this method is to stabilize the inverse problem by formulating
it as a nonlinear optimization problem, -
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First, we derive the mathematical formulation and sketch the solution of the di-
rect scatfering problem for acoustic waves in a penetrable, unbounded inhomogeneous
medium. The inhomogeneity of the medium is caused by its complex absorption co-
efficient. Then we present the solution of the inverse scattering problem by using the
Colton-Monk method. Since in our case the absorption coefficient is complex valued,
our approach is valid for all wave numbers. _

The case in which the scattering object is a penetrable, inhomogeneous medium, with
inhomogeneity caused by an absorption coefficient having compact support, has been
solved in [8]. This note is an extension of the main results of {8] to the case when the
absorption coeflicient no longer has compact support. See 2] and [8] for application of
the Colton~Monk method to the case of impenetrable media.

2. The direct scattering problem. Counsider the propagation of acoustic plane
waves through an inhomogeneous medium in three-dimensional Euclidean space. The
behavior of an acoustic wave is determined by the frequency of the propagating wave
and by the following three properties of the medium: its density, its sound velocity
and its absorption. Assume that the wave frequency is a known constant. Let ¢(z)
denote the local speed of sound and ~+{z) > 0 the absorption (attenuation, damping)
coefficient, where z ¢ R®.

In the linearized theory of acoustics the wave motion can be determined from a
velocity potential U(z,t}, {cf. [1]). Assuming that the density is slowly varying, it can
be shown that U satisfies the following damped wave equation

o*U ou
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Suppose the acoustic propagation is a tim&ha\rmonic, plane wave with frequency
w > 0, so that U(z,t) = u(z)e ™. Let ¢(z) =

Under these assumptions u, the spac&ciependent part of the velocity potentlal sat-
isfies the reduced wave equation

A+ kB u(a)u =
where the wave number k = w/cy and
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The function x is called the index of refraction.

Assume that an incoming time harmonic acoustic wave u'{z) = e**(&2) is scattered
by the inhomogeneous medium having an unknown index of refraction. Here, (&,2)
. denotes the scalar or dot product between & and 2z
The above considerations motivate the following mat}mmatlcai problem:

p=1+i

- Determine a bounded, twice continuously d:ﬁ'crmtmble_ function % such that

Au+ k[l +im(z)u=0 in R® | (2.1)

u = e F02) 4 oo i R? (2.2)
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reroe \ Or _ ’ _ . :

95



where m is a positive, contmuousiy &xffcrcntxa.ble function in R* satxsfymg the growth
condition c

m(z) < ‘!---j—m for !33[ > R., - | ' - {24)

for some positive constants C, s and B.
One can show that a bounded continuous solution u of the integral equation

we) = 1 [[eeumipte)ay. s R @)

where : fiklz g
_ explik|lz —y[]
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satisfies the conditions (2.1)-(2.3).
Let us denote by u® the function

(@) =it [[ $leml)uls)dy
/)

The function u° satisfies the Sommerfeld condition (2.3). Let us define the far—field
pattern F(&;k,&) by
. 2y —iky 8
F(2;k,&) = riingare u*{z)
where z = rZ and || = 1, assuming this imit exists. We note that if « is continuous
and bounded in R® then the far—ﬁeld pattern exists and is equal to

FlEska) = / [ exp|~ik(2,y)|m(y)uly) dy . (2.6)

The proof of (2.6} follows from the Lebesgue dominated convergence theorem and the
inequality {2.4).

Direct Scattering Problem: Assuming that m and u' are known, compute
F(gk,&). '

One can show that the incident wave and the function m uniquely determine the
far—field pattern.

For this purpose define the Hilbert space L? (R®} by .

LL(R?) = {v: vis mcasura.bie,f m(z)]_v(z)!z dz < oo}

with the inner product and the norm given by (f,9)13, = [, f m(z)f(z)g(z) dz and

lvliZz = ffm (z)lv{2)i?dz . Then we can rewrite the mtegra.l equa.tzo):z (2. 5)

. o s — ik T , : o (2.7)
where fo(z) = &%) | One can show that T : Lfn(Rs} - L2 (R?) is a compact
linear operator in L2 (R®). |
. Asin the case when m has compact support, the mtegral equation (2 7) is equivalent

to the sca.ttermg problem (2.1)-(2.3), provided the solution of {2.7) is continuous and
bounded. :



THEOREM 2.1, There ezists a unique, contmuous and bounded solution » € L? (Rs)
of equation {2.7).

The proof of this theorem follows from the Fredimim alternative, the Sommerfeld
condition (2.3) and the regularity properties of the Newtonian potential.

Now we turn our attention to the inverse scattering problem.
3. The inverse scattering problem. _ _
INVERSE SCATTERING PROBLEM: From a knowledge of the far-field patterns
F{2;k,&;) corresponding to the incident plane waves u} with direction &;,7 =1,...,n,
determine the function m. :

- The inverse scattering problem is difficult to solve since it is both nonlinear and
improperly posed. In particular, there is no a linear relstionship between F', u® and
the function m . Small perturbations in F may result in either large changes in m or
an unsolvable problem.

To solve the inverse scattering problem let us define H to be the vector subspace

- B =span{ii(kle)Y(3) 1= 0,1,2,..., ~ <m < 1}

of L (R®) where ji(k|z}} is a spherical Bessel function and Y;™(&) is a spherical
harmonic. H is the closure of H in L2 {R?).
Observe that the Herglotz wave function defined by

o) = [ o35 as(é) (3.1)

a4}

with kernel from L*{0%) belongs to H.
We define the following radiation problem.

DEFINITION 3.1. The radiation problem is to find the pair of functions {v,w}, v€
L? (R%) and w € H, such that

@ ve)=u)+# [[Ee ),
R2

| : rro. |
(b)  For & € 80, —if;— f f eV m(yu(y)dy =i .
RY o

One can prove the following uniqueness and the existence theorems:
THEOREM 3.1. There ezists at most one solution for the radiation problem.
THEOREM 3.2. There ezists a solution for the radiation problem.

The next result forms a relationship between the solution of the radiation problem
and the solution of the problem defined by (2.1} - (2.3). This also gives the motivation
for examination of the radiation problem. o .
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THEOREM 3.3. Suppose there exists a solution {v,w} for the radiation problem such
that w is a Herglolz wave funciion with kernel g. Then if F(2,k;&) is tize far—field.
pattern corresponding to (2.1) - (2.4}, we have

/F(sz k;&)9(3) ds (*) . = (3.2)

Our proofs of the Theorems 3.1-3 are long and complicated and hence cannot be
presented here. .

The main idea of the numerical solution of the inverse scattering problem by the
Colton~Monk method is the following: First from a knowledge of the far—field patterns
F(&;k,&;) by using (3.2) one calculates an approximation of the function g. Next, by
the equation {3.1) we define the Herglotz wave function w . Finally, we reformulate the
overdetermined radiation problem as a nonlinear optimization problem and solve it for
the unknown function m. Since the inverse scattering problem is improperly posed,
one has to combine the above steps and calculate = by the Tikhonov regularization
method. For the numerical implementation of the Colton-Monk method see [4] and [2].

The orthogonal projection method of Colton-Monk has several advantages. Most
previous solutions of the inverse problem require a direct scattering problem to be
solved at each step of the iteration scheme, while the Colton-Monk method avoids this.
Also, the number of unknown functions in the optimization scheme does not depend on
the number of incident fields, but only depends on the number of different frequencies
of the incoming waves. Moreover, if we have more data, we can determine the solution
of the inverse problem with better accuracy without increasing the computational effort
considerably.
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